Creating and Destroying Java Objects: Part 1

Three items that involve creating and destroying Java objects


June 13, 2008
URL:http://www.drdobbs.com/jvm/creating-and-destroying-java-objects-par/208403883

Editor's Note: This article is based on Effective Java, Second Edition, by Joshua Bloch, which presents proven rules ("items") for improving your programs and designs (a format, by the way, borrowed from Scott Meyers's Effective C++. All in all, Effective Java, Second Edition consists of 78 items. Part 1 of this article covers three items that involve creating and destroying Java objects


This article concerns creating and destroying Java objects: when and how to create them, when and how to avoid creating them, how to ensure they are destroyed in a timely manner, and how to manage any cleanup actions that must precede their destruction.

Item 1: Consider static factory methods instead of constructors

The normal way for a class to allow a client to obtain an instance of itself is to provide a public constructor. There is another technique that should be a part of every programmer's toolkit. A class can provide a public static factory method, which is simply a static method that returns an instance of the class. Here's a simple example from Boolean (the boxed primitive class for the primitive type boolean). This method translates a boolean primitive value into a Boolean object reference:

public static Boolean valueOf(boolean b) {
  return b ? Boolean.TRUE : Boolean.FALSE;
}

Note that a static factory method is not the same as the Factory Method pattern from Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma et al. [Gamma, 107]. The static factory method described in this item has no direct equivalent in Design Patterns.

A class can provide its clients with static factory methods instead of, or in addition to, constructors. Providing a static factory method instead of a public constructor has both advantages and disadvantages.

One advantage of static factory methods is that, unlike constructors, they have names. If the parameters to a constructor do not, in and of themselves, describe the object being returned, a static factory with a well-chosen name is easier to use and the resulting client code easier to read. For example, the constructor BigInteger(int, int, Random), which returns a BigInteger that is probably prime, would have been better expressed as a static factory method named BigInteger.probablePrime. (This method was eventually added in the 1.4 release.)

A class can have only a single constructor with a given signature. Programmers have been known to get around this restriction by providing two constructors whose parameter lists differ only in the order of their parameter types. This is a really bad idea. The user of such an API will never be able to remember which constructor is which and will end up calling the wrong one by mistake. People reading code that uses these constructors will not know what the code does without referring to the class documentation.

Because they have names, static factory methods don't share the restriction discussed in the previous paragraph. In cases where a class seems to require multiple constructors with the same signature, replace the constructors with static factory methods and carefully chosen names to highlight their differences.

A second advantage of static factory methods is that, unlike constructors, they are not required to create a new object each time they're invoked. This allows immutable classes (Item 15) to use preconstructed instances, or to cache instances as they're constructed, and dispense them repeatedly to avoid creating unnecessary duplicate objects. The Boolean.valueOf(boolean) method illustrates this technique: it never creates an object. This technique is similar to the Flyweight pattern [Gamma95, p. 195]. It can greatly improve performance if equivalent objects are requested often, especially if they are expensive to create.

The ability of static factory methods to return the same object from repeated invocations allows classes to maintain strict control over what instances exist at any time. Classes that do this are said to be instance-controlled. There are several reasons to write instance-controlled classes. Instance control allows a class to guarantee that it is a singleton (Item 3) or noninstantiable (Item 4). Also, it allows an immutable class (Item 15) to make the guarantee that no two equal instances exist: a.equals(b) if and only if a==b. If a class makes this guarantee, then its clients can use the == operator instead of the equals(Object) method, which may result in improved performance. Enum types (Item 30) provide this guarantee.

A third advantage of static factory methods is that, unlike constructors, they can return an object of any subtype of their return type. This gives you great flexibility in choosing the class of the returned object. One application of this flexibility is that an API can return objects without making their classes public. Hiding implementation classes in this fashion leads to a very compact API. This technique lends itself to interface-based frameworks (Item 18), where interfaces provide natural return types for static factory methods.

Interfaces can't have static methods, so by convention, static factory methods for an interface named Type are put in a noninstantiable class (Item 4) named Types. For example, the Java Collections Framework has 32 convenience implementations of its collection interfaces, providing unmodifiable collections, synchronized collections, and the like. Nearly all of these implementations are exported via static factory methods in one noninstantiable class (java.util.Collections).

The classes of the returned objects are all nonpublic. The Collections Framework API is much smaller than it would have been had it exported 32 separate public classes, one for each convenience implementation. It is not just the bulk of the API that is reduced, but the conceptual weight. The user knows that the returned object has precisely the API specified by its interface, so there is no need to read additional class documentation for the implementation classes. Furthermore, using such a static factory method requires the client to refer to the returned object by its interface rather than its implementation class, which is generally good practice (Item 52).

Not only can the class of an object returned by a public static factory method be nonpublic, but the class can vary from invocation to invocation depending on the values of the parameters to the static factory. Any class that is a subtype of the declared return type is permissible. The class of the returned object can also vary from release to release for enhanced software maintainability and performance.

The class java.util.EnumSet (Item 32), introduced in release 1.5, has no public constructors, only static factories. They return one of two implementations, depending on the size of the underlying enum type: if it has 64 or fewer elements, as most enum types do, the static factories return a RegularEnumSet instance, which is backed by a single long; if the enum type has 65 or more elements, the factories return a JumboEnumSet instance, backed by a long array.

The existence of these two implementation classes is invisible to clients. If RegularEnumSet ceased to offer performance advantages for small enum types, it could be eliminated from a future release with no ill effects. Similarly, a future release could add a third or fourth implementation of EnumSet if it proved beneficial for performance. Clients neither know nor care about the class of the object they get back from the factory; they care only that it is some subclass of EnumSet.

The class of the object returned by a static factory method need not even exist at the time the class containing the method is written. Such flexible static factory methods form the basis of service provider frameworks, such as the Java Database Connectivity API (JDBC). A service provider framework is a system in which multiple service providers implement a service, and the system makes the implementations available to its clients, decoupling them from the implementations.

There are three essential components of a service provider framework: a service interface, which providers implement; a provider registration API, which the system uses to register implementations, giving clients access to them; and a service access API, which clients use to obtain an instance of the service. The service access API typically allows but does not require the client to specify some criteria for choosing a provider. In the absence of such a specification, the API returns an instance of a default implementation. The service access API is the "flexible static factory" that forms the basis of the service provider framework.

An optional fourth component of a service provider framework is a service provider interface, which providers implement to create instances of their service implementation. In the absence of a service provider interface, implementations are registered by class name and instantiated reflectively (Item 53). In the case of JDBC, Connection plays the part of the service interface, DriverManager.registerDriver is the provider registration API, DriverManager.getConnection is the service access API, and Driver is the service provider interface. There are numerous variants of the service provider framework pattern. For example, the service access API can return a richer service interface than the one required of the provider, using the Adapter pattern [Gamma95, p. 139]. Here is a simple implementation with a service provider interface and a default provider:

// Service provider framework sketch
// Service interface
public interface Service {
   ... // Service-specific methods go here
}
// Service provider interface
public interface Provider {
   Service newService();
}
// Noninstantiable class for service registration and access
public class Services {
   private Services() { } // Prevents instantiation (Item 4)
   // Maps service names to services
   private static final Map<String, Provider> providers =
      new ConcurrentHashMap<String, Provider>();
   public static final String DEFAULT_PROVIDER_NAME = "<def>";
   // Provider registration API
   public static void registerDefaultProvider(Provider p) {
      registerProvider(DEFAULT_PROVIDER_NAME, p);
   }
   public static void registerProvider(String name, Provider p){
      providers.put(name, p);
   }
   // Service access API
   public static Service newInstance() {
      return newInstance(DEFAULT_PROVIDER_NAME);
   }
   public static Service newInstance(String name) {
      Provider p = providers.get(name);
      if (p == null)
         throw new IllegalArgumentException(
           "No provider registered with name: " + name);
      return p.newService();
   }
}

A fourth advantage of static factory methods is that they reduce the verbosity of creating parameterized type instances. Unfortunately, you must specify the type parameters when you invoke the constructor of a parameterized class even if they're obvious from context. This typically requires you to provide the type parameters twice in quick succession:

Map<String, List<String>> m =
   new HashMap<String, List<String>>();

This redundant specification quickly becomes painful as the length and complexity of the type parameters increase. With static factories, however, the compiler can figure out the type parameters for you. This is known as type inference. For example, suppose that HashMap provided this static factory:

public static <K, V> HashMap<K, V> newInstance() {
   return new HashMap<K, V>();
}

Then you could replace the wordy declaration above with this succinct alternative:

Map<String, List<String>> m = HashMap.newInstance();

Someday the language may perform this sort of type inference on constructor invocations as well as method invocations, but as of release 1.6, it does not.

Unfortunately, the standard collection implementations such as HashMap do not have factory methods as of release 1.6, but you can put these methods in your own utility class. More importantly, you can provide such static factories in your own parameterized classes.

The main disadvantage of providing only static factory methods is that classes without public or protected constructors cannot be subclassed. The same is true for nonpublic classes returned by public static factories. For example, it is impossible to subclass any of the convenience implementation classes in the Collections Framework. Arguably this can be a blessing in disguise, as it encourages programmers to use composition instead of inheritance (Item 16).

A second disadvantage of static factory methods is that they are not readily distinguishable from other static methods. They do not stand out in API documentation in the way that constructors do, so it can be difficult to figure out how to instantiate a class that provides static factory methods instead of constructors. The Javadoc tool may someday draw attention to static factory methods. In the meantime, you can reduce this disadvantage by drawing attention to static factories in class or interface comments, and by adhering to common naming conventions. Here are some common names for static factory methods:

In summary, static factory methods and public constructors both have their uses, and it pays to understand their relative merits. Often static factories are preferable, so avoid the reflex to provide public constructors without first considering static factories.

Item 2: Consider a builder when faced with many constructor parameters

Static factories and constructors share a limitation: they do not scale well to large numbers of optional parameters. Consider the case of a class representing the Nutrition Facts label that appears on packaged foods. These labels have a few required fields -- serving size, servings per container, and calories per serving -- and over 20 optional fields -- total fat, saturated fat, trans fat, cholesterol, sodium, and so on. Most products have nonzero values for only a few of these optional fields.

What sort of constructors or static factories should you write for such a class? Traditionally, programmers have used the telescoping constructor pattern, in which you provide a constructor with only the required parameters, another with a single optional parameter, a third with two optional parameters, and so on, culminating in a constructor with all the optional parameters. Here's how it looks in practice. For brevity's sake, only four optional fields are shown:

// Telescoping constructor pattern - does not scale well!
public class NutritionFacts {
   private final int servingSize; // (mL) required
   private final int servings; // (per container) required
   private final int calories; // optional
   private final int fat; // (g) optional
   private final int sodium; // (mg) optional
   private final int carbohydrate; // (g) optional
   public NutritionFacts(int servingSize, int servings) {
      this(servingSize, servings, 0);
   }
   public NutritionFacts(int servingSize, int servings,int calories) {
      this(servingSize, servings, calories, 0);
   }
   public NutritionFacts(int servingSize, int servings,int calories, int fat) {
      this(servingSize, servings, calories, fat, 0);
   }
   public NutritionFacts(int servingSize, int servings, int calories, int fat, int sodium) {
      this(servingSize, servings, calories, fat, sodium, 0);
   }
   public NutritionFacts(int servingSize, int servings,int calories, int fat, int sodium, int carbohydrate) {
      this.servingSize = servingSize;
      this.servings = servings;
      this.calories = calories;
      this.fat = fat;
      this.sodium = sodium;
      this.carbohydrate = carbohydrate;
   }
}

When you want to create an instance, you use the constructor with the shortest parameter list containing all the parameters you want to set:

NutritionFacts cocaCola =
   new NutritionFacts(240, 8, 100, 0, 35, 27);

Typically this constructor invocation will require many parameters that you don't want to set, but you're forced to pass a value for them anyway. In this case, we passed a value of 0 for fat. With "only" six parameters this may not seem so bad, but it quickly gets out of hand as the number of parameters increases.

In short, the telescoping constructor pattern works, but it is hard to write client code when there are many parameters, and harder still to read it. The reader is left wondering what all those values mean and must carefully count parameters to find out. Long sequences of identically typed parameters can cause subtle bugs. If the client accidentally reverses two such parameters, the compiler won't complain, but the program will misbehave at runtime (Item 40).

A second alternative when you are faced with many constructor parameters is the JavaBeans pattern, in which you call a parameterless constructor to create the object and then call setter methods to set each required parameter and each optional parameter of interest:

// JavaBeans Pattern - allows inconsistency, mandates mutability
public class NutritionFacts {
   // Parameters initialized to default values (if any)
   private int servingSize = -1; // Required; no default value
   private int servings = -1; // " " " "
   private int calories = 0;
   private int fat = 0;
   private int sodium = 0;
   private int carbohydrate = 0;
   public NutritionFacts() { }
   // Setters
   public void setServingSize(int val) { servingSize = val; }
   public void setServings(int val) { servings = val; }
   public void setCalories(int val) { calories = val; }
   public void setFat(int val) { fat = val; }
   public void setSodium(int val) { sodium = val; }
   public void setCarbohydrate(int val) { carbohydrate = val; }
}

This pattern has none of the disadvantages of the telescoping constructor pattern. It is easy, if a bit wordy, to create instances, and easy to read the resulting code:

NutritionFacts cocaCola = new NutritionFacts();
cocaCola.setServingSize(240);
cocaCola.setServings(8);
cocaCola.setCalories(100);
cocaCola.setSodium(35);
cocaCola.setCarbohydrate(27);

Unfortunately, the JavaBeans pattern has serious disadvantages of its own. Because construction is split across multiple calls, a JavaBean may be in an inconsistent state partway through its construction. The class does not have the option of enforcing consistency merely by checking the validity of the constructor parameters. Attempting to use an object when it's in an inconsistent state may cause failures that are far removed from the code containing the bug, hence difficult to debug. A related disadvantage is that the JavaBeans pattern precludes the possibility of making a class immutable (Item 15), and requires added effort on the part of the programmer to ensure thread safety.

It is possible to reduce these disadvantages by manually "freezing" the object when its construction is complete and not allowing it to be used until frozen, but this variant is unwieldy and rarely used in practice. Moreover, it can cause errors at runtime, as the compiler cannot ensure that the programmer calls the freeze method on an object before using it.

Luckily, there is a third alternative that combines the safety of the telescoping constructor pattern with the readability of the JavaBeans pattern. It is a form of the Builder pattern [Gamma95, p. 97]. Instead of making the desired object directly, the client calls a constructor (or static factory) with all of the required parameters and gets a builder object. Then the client calls setter-like methods on the builder object to set each optional parameter of interest. Finally, the client calls a parameterless build method to generate the object, which is immutable. The builder is a static member class (Item 22) of the class it builds. Here's how it looks in practice:

// Builder Pattern
public class NutritionFacts {
   private final int servingSize;
   private final int servings;
   private final int calories;
   private final int fat;
   private final int sodium;
   private final int carbohydrate;
   public static class Builder {
      // Required parameters
      private final int servingSize;
      private final int servings;
      // Optional parameters - initialized to default values
      private int calories = 0;
      private int fat = 0;
      private int carbohydrate = 0;
      private int sodium = 0;
      public Builder(int servingSize, int servings) {
          this.servingSize = servingSize;
          this.servings = servings;
      }
      public Builder calories(int val)
         { calories = val; return this; }
      public Builder fat(int val)
         { fat = val; return this; }
      public Builder carbohydrate(int val)
         { carbohydrate = val; return this; }
      public Builder sodium(int val)
         { sodium = val; return this; }
      public NutritionFacts build() {
         return new NutritionFacts(this);
      }
   }
   private NutritionFacts(Builder builder) {
      servingSize = builder.servingSize;
      servings = builder.servings;    
      calories = builder.calories;
      fat = builder.fat;
      sodium = builder.sodium;
      carbohydrate = builder.carbohydrate;
      }
   }

Note that NutritionFacts is immutable, and that all parameter default values are in a single location. The builder's setter methods return the builder itself so that invocations can be chained. Here's how the client code looks:

NutritionFacts cocaCola = new NutritionFacts.Builder(240, 8).
calories(100).sodium(35).carbohydrate(27).build();

This client code is easy to write and, more importantly, to read. The Builder pattern simulates named optional parameters as found in Ada and Python.

Like a constructor, a builder can impose invariants on its parameters. The build method can check these invariants. It is critical that they be checked after copying the parameters from the builder to the object, and that they be checked on the object fields rather than the builder fields (Item 39). If any invariants are violated, the build method should throw an IllegalStateException (Item 60). The exception's detail method should indicate which invariant is violated (Item 63).

Another way to impose invariants involving multiple parameters is to have setter methods take entire groups of parameters on which some invariant must hold. If the invariant isn't satisfied, the setter method throws an IllegalArgumentException. This has the advantage of detecting the invariant failure as soon as the invalid parameters are passed, instead of waiting for build to be invoked.

A minor advantage of builders over constructors is that builders can have multiple varargs parameters. Constructors, like methods, can have only one varargs parameter. Because builders use separate methods to set each parameter, they can have as many varargs parameters as you like, up to one per setter method.

The Builder pattern is flexible. A single builder can be used to build multiple objects. The parameters of the builder can be tweaked between object creations to vary the objects. The builder can fill in some fields automatically, such as a serial number that automatically increases each time an object is created.

A builder whose parameters have been set makes a fine Abstract Factory [Gamma95, p. 87]. In other words, a client can pass such a builder to a method to enable the method to create one or more objects for the client. To enable this usage, you need a type to represent the builder. If you are using release 1.5 or a later release, a single generic type (Item 26) suffices for all builders, no matter what type of object they're building:

// A builder for objects of type T
   public interface Builder<T> {
   public T build();
}

Note that our NutritionFacts.Builder class could be declared to implement Builder<NutritionFacts>. Methods that take a Builder instance would typically constrain the builder's type parameter using a bounded wildcard type (Item 28). For example, here is a method that builds a tree using a client-provided Builder instance to build each node:

Tree buildTree(Builder<? extends Node> nodeBuilder) { ... }

The traditional Abstract Factory implementation in Java has been the Class object, with the newInstance method playing the part of the build method. This usage is fraught with problems. The newInstance method always attempts to invoke the class's parameterless constructor, which may not even exist. You don't get a compile-time error if the class has no accessible parameterless constructor. Instead, the client code must cope with InstantiationException or IllegalAccessException at runtime, which is ugly and inconvenient. Also, the newInstance method propagates any exceptions thrown by the parameterless constructor, even though newInstance lacks the corresponding throws clauses. In other words, Class.newInstance breaks compile-time exception checking. The Builder interface, shown above, corrects these deficiencies.

The Builder pattern does have disadvantages of its own. In order to create an object, you must first create its builder. While the cost of creating the builder is unlikely to be noticeable in practice, it could be a problem in some performancecritical situations. Also, the Builder pattern is more verbose than the telescoping constructor pattern, so it should be used only if there are enough parameters, say, four or more. But keep in mind that you may want to add parameters in the future. If you start out with constructors or static factories, and add a builder when the class evolves to the point where the number of parameters starts to get out of hand, the obsolete constructors or static factories will stick out like a sore thumb. Therefore, it's often better to start with a builder in the first place.

In summary, the Builder pattern is a good choice when designing classes whose constructors or static factories would have more than a handful of parameters, especially if most of those parameters are optional. Client code is much easier to read and write with builders than with the traditional telescoping constructor pattern, and builders are much safer than JavaBeans.

Item 3: Enforce the Singleton Property with a Private Constructor or an enum Type

A singleton is simply a class that is instantiated exactly once [Gamma95, p. 127]. Singletons typically represent a system component that is intrinsically unique, such as the window manager or file system. Making a class a singleton can make it difficult to test its clients, as it's impossible to substitute a mock implementation for a singleton unless it implements an interface that serves as its type.

Before release 1.5, there were two ways to implement singletons. Both are based on keeping the constructor private and exporting a public static member to provide access to the sole instance. In one approach, the member is a final field:

// Singleton with public final field
public class Elvis {
   public static final Elvis INSTANCE = new Elvis();
   private Elvis() { ... }
   public void leaveTheBuilding() { ... }
}

The private constructor is called only once, to initialize the public static final field Elvis.INSTANCE. The lack of a public or protected constructor guarantees a "monoelvistic" universe: exactly one Elvis instance will exist once the Elvis class is initialized -- no more, no less. Nothing that a client does can change this, with one caveat: a privileged client can invoke the private constructor reflectively (Item 53) with the aid of the AccessibleObject.setAccessible method. If you need to defend against this attack, modify the constructor to make it throw an exception if it's asked to create a second instance.

In the second approach to implementing singletons, the public member is a static factory method:

// Singleton with static factory
public class Elvis {
   private static final Elvis INSTANCE = new Elvis();
   private Elvis() { ... }
   public static Elvis getInstance() { return INSTANCE; }
   public void leaveTheBuilding() { ... }
}

All calls to Elvis.getInstance return the same object reference, and no other Elvis instance will ever be created (with the same caveat mentioned above).

The main advantage of the public field approach is that the declarations make it clear that the class is a singleton: the public static field is final, so it will always contain the same object reference. There is no longer any performance advantage to the public field approach: modern Java virtual machine (JVM) implementations are almost certain to inline the call to the static factory method.

One advantage of the factory-method approach is that it gives you the flexibility to change your mind about whether the class should be a singleton without changing its API. The factory method returns the sole instance but could easily be modified to return, say, a unique instance for each thread that invokes it. A second advantage, concerning generic types, is discussed in Item 27. Often neither of these advantages is relevant, and the final-field approach is simpler.

To make a singleton class that is implemented using either of the previous approaches serializable, it is not sufficient merely to add implements Serializable to its declaration. To maintain the singleton guarantee, you have to declare all instance fields transient and provide a readResolve method (Item 77). Otherwise, each time a serialized instance is deserialized, a new instance will be created, leading, in the case of our example, to spurious Elvis sightings. To prevent this, add this readResolve method to the Elvis class:

// readResolve method to preserve singleton property
private Object readResolve() {
   // Return the one true Elvis and let the garbage collector
   // take care of the Elvis impersonator.
   return INSTANCE;
}

As of release 1.5, there is a third approach to implementing singletons. Simply make an enum type with one element:

// Enum singleton - the preferred approach
public enum Elvis {
   INSTANCE;
   public void leaveTheBuilding() { ... }
}

This approach is functionally equivalent to the public field approach, except that it is more concise, provides the serialization machinery for free, and provides an ironclad guarantee against multiple instantiation, even in the face of sophisticated serialization or reflection attacks. While this approach has yet to be widely adopted, a single-element enum type is the best way to implement a singleton.


Joshua Bloch is Chief Java Architect at Google, and previously a Distinguished Engineer at Sun Microsystems.

Related Article

Creating and Destroying Java Objects: Part 2

Terms of Service | Privacy Statement | Copyright © 2024 UBM Tech, All rights reserved.