Channels ▼
RSS

Tools

New Research Can Spot Cloud Computing Problems Before They Start


Large-scale computer hosting infrastructures offer a variety of services to computer users, including cloud computing — which offers users access to powerful computers and software applications hosted by remote groups of servers. But when these infrastructures run into problems — like bottlenecks that slow their operating speed — it can be costly for both the infrastructure provider and the user. New research from North Carolina State University will allow these infrastructure providers to more accurately predict such anomalies, and address them before they become a major problem.

“Previously, something bad would happen and you’d be left trying to figure out what took place. Often, you’d be unable to recreate the exact conditions that created the problem,” said Dr. Xiaohui (Helen) Gu, an assistant professor of computer science and coauthor of a paper describing the new research. “However, if you can predict an anomaly, you are able to track the exact conditions that are leading up to a problem, diagnose what is wrong and put corrective actions into place much more quickly.”

At issue are anomalies, or problems, that can affect hosting infrastructures that support services like cloud computing or data centers. These anomalies can result in slowed response times, lower user capacity and host failures — all of which are bad news for a host’s clients. This can create significant problems for the host company as well, since violations of their service agreements can lead to financial penalties or a loss of clients.

In order for a program to accurately predict an anomaly, it has to know what constitutes normal behavior. That can be tricky for large-scale hosting infrastructure. These infrastructures host a variety of different applications for their clients, and many of these applications are operating in dynamic contexts.

For example, one application may be hosting a website that can go from being very busy to essentially idle. And, because hosting infrastructures serve multiple clients simultaneously, the computing resources available to a specific client are also variable — depending on the number of clients using the infrastructure at any given time and what those clients are trying to do.

These variables make it difficult for a program to predict abnormal behavior, because normal behavior can be so variable.

In order to accurately predict abnormalities, the researchers crafted a collection of models that examine system activity in a variety of different contexts. In other words, the models are able to determine what constitutes normal behavior under a lot of different circumstances. Since the models do a good job of defining normal behavior, they are able to accurately identify abnormal behavior.

“Our ‘context aware’ prediction approach improved our accuracy significantly,” says Gu. “We were 50 percent more accurate at predicting anomalies than any existing programs, and had an 80 percent lower rate of false alarms.”

The research, “Adaptive System Anomaly Prediction for Large-Scale Hosting Infrastructures,” was coauthored by Gu, NC State Ph.D. student Yongmin Tan, and Haixun Wang of Microsoft Research Asia. The work was funded by the National Science Foundation, the U.S. Army Research Office and IBM. The paper will be presented July 27 at the ACM Symposium on Principles of Distributed Computing in Zurich, Switzerland.

—North Carolina State University Newsroom


Related Reading


More Insights






Currently we allow the following HTML tags in comments:

Single tags

These tags can be used alone and don't need an ending tag.

<br> Defines a single line break

<hr> Defines a horizontal line

Matching tags

These require an ending tag - e.g. <i>italic text</i>

<a> Defines an anchor

<b> Defines bold text

<big> Defines big text

<blockquote> Defines a long quotation

<caption> Defines a table caption

<cite> Defines a citation

<code> Defines computer code text

<em> Defines emphasized text

<fieldset> Defines a border around elements in a form

<h1> This is heading 1

<h2> This is heading 2

<h3> This is heading 3

<h4> This is heading 4

<h5> This is heading 5

<h6> This is heading 6

<i> Defines italic text

<p> Defines a paragraph

<pre> Defines preformatted text

<q> Defines a short quotation

<samp> Defines sample computer code text

<small> Defines small text

<span> Defines a section in a document

<s> Defines strikethrough text

<strike> Defines strikethrough text

<strong> Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<u> Defines underlined text

Dr. Dobb's encourages readers to engage in spirited, healthy debate, including taking us to task. However, Dr. Dobb's moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing or spam. Dr. Dobb's further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | View the list of supported HTML tags you can use to style comments. | Please read our commenting policy.
 

Video