Dr. Dobb's is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.


Channels ▼
RSS

Parallel

Choose Concurrency-Friendly Data Structures


What is a high-performance data structure? To answer that question, we're used to applying normal considerations like Big-Oh complexity, and memory overhead, locality, and traversal order. All of those apply to both sequential and concurrent software.

But in concurrent code, we need to consider two additional things to help us pick a data structure that is also sufficiently concurrency-friendly:

  • In parallel code, your performance needs likely include the ability to allow multiple threads to use the data at the same time. If this is (or may become) a high-contention data structure, does it allow for concurrent readers and/or writers in different parts of the data structure at the same time? If the answer is, "No," then you may be designing an inherent bottleneck into your system and be just asking for lock convoys as threads wait, only one being able to use the data structure at a time.
  • On parallel hardware, you may also care about minimizing the cost of memory synchronization. When one thread updates one part of the data structure, how much memory needs to be moved to make the change visible to another thread? If the answer is, "More than just the part that has ostensibly changed," then again you're asking for a potential performance penalty, this time due to cache sloshing as more data has to move from the core that performed the update to the core that is reading the result.

It turns out that both of these answers are directly influenced by whether the data structure allows truly localized updates. If making what appears to be a small change in one part of the data structure actually ends up reading or writing other parts of the structure, then we lose locality; those other parts need to be locked, too, and all of the memory that has changed needs to be synchronized.

To illustrate, let's consider two common data structures: linked lists and balanced trees.


Related Reading


More Insights






Currently we allow the following HTML tags in comments:

Single tags

These tags can be used alone and don't need an ending tag.

<br> Defines a single line break

<hr> Defines a horizontal line

Matching tags

These require an ending tag - e.g. <i>italic text</i>

<a> Defines an anchor

<b> Defines bold text

<big> Defines big text

<blockquote> Defines a long quotation

<caption> Defines a table caption

<cite> Defines a citation

<code> Defines computer code text

<em> Defines emphasized text

<fieldset> Defines a border around elements in a form

<h1> This is heading 1

<h2> This is heading 2

<h3> This is heading 3

<h4> This is heading 4

<h5> This is heading 5

<h6> This is heading 6

<i> Defines italic text

<p> Defines a paragraph

<pre> Defines preformatted text

<q> Defines a short quotation

<samp> Defines sample computer code text

<small> Defines small text

<span> Defines a section in a document

<s> Defines strikethrough text

<strike> Defines strikethrough text

<strong> Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<u> Defines underlined text

Dr. Dobb's encourages readers to engage in spirited, healthy debate, including taking us to task. However, Dr. Dobb's moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing or spam. Dr. Dobb's further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | View the list of supported HTML tags you can use to style comments. | Please read our commenting policy.