Dr. Dobb's is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.


Channels ▼
RSS

Error-Resilient Coding for Audio Communication - Part 1: Waveform and CELP Speech Codecs


3.1 INTRODUCTION
In this chapter we review the main techniques for error concealment in packet audio. As explained in Chapters 7 - 10, forward error correction (FEC) or repeat request solutions are often adequate for streaming media and broadcast. These can virtually eliminate information loss, guaranteeing that every bit is actually received at the decoder side. Nevertheless, these techniques will also require the introduction of additional delay, and the higher the protection level desired, the higher the delay required.

Real-time communication (RTC) applications are very delay sensitive and will not be able to fully exploit these techniques to reduce 100% of the losses. For this reason, RTC needs are quite unique. We need error concealment, and we need FEC techniques that can be applied without excessive increase in delay. In this chapter we look at some of the techniques used in error concealment for speech and look at media-aware FEC techniques, with particular interest in RTC.

Compression and error concealment are tightly related. Compression tries to remove as much redundancy from the signal as possible, but the more redundancy is removed, the more important each piece of information is, and therefore the harder it is to conceal lost packets. More specifically, speech is a dynamic but slowly varying signal; the key way of compressing speech is by only transmitting signal changes in relation to the previous or expected state. Nevertheless, only transmitting these changes in a differential form means that if you lose some information (e.g., due to a packet loss), the decoder does not know the current state of the signal any more.

It is always expected that the segment corresponding to the missing data will not be properly decoded. But with differential coding, subsequent frames may also be affected. Furthermore, it is easier to replace any missing speech segments if one has received the correct signal in the vicinity of the missing segment. For all these reasons, error concealment may significantly depend on the compression technology used.

We will start this chapter by looking at some of the basic ideas behind packet loss concealment for speech. With that objective, in Section 3.2 we introduce the basic concealment techniques used in nonpredictive speech codecs. The job of concealing losses becomes harder as the codec removes more and more redundancy from the signal.

In Section 3.3, we discuss some of the techniques used to reduce the impact of the feedback loop in CELP (Codebook Excited Linear Prediction) and other predictive codecs. In Section 3.4, we present some recent results in loss concealment for transform coders, which are used both in speech and in audio applications. Finally, in Section 3.5 we discuss recent research in media-aware FEC techniques.

Particular attention is paid to speech, due to its importance in RTC, but many of the recent advances in loss concealment techniques we will discuss apply also to audio. For example, the same principles used in the overlapped transform concealment techniques can be used for most audio codecs, and the media-aware FEC can be applied to most audio or video coders. We also point out that this chapter is closely related to the ideas presented in Chapters 15 and 16.


Related Reading


More Insights






Currently we allow the following HTML tags in comments:

Single tags

These tags can be used alone and don't need an ending tag.

<br> Defines a single line break

<hr> Defines a horizontal line

Matching tags

These require an ending tag - e.g. <i>italic text</i>

<a> Defines an anchor

<b> Defines bold text

<big> Defines big text

<blockquote> Defines a long quotation

<caption> Defines a table caption

<cite> Defines a citation

<code> Defines computer code text

<em> Defines emphasized text

<fieldset> Defines a border around elements in a form

<h1> This is heading 1

<h2> This is heading 2

<h3> This is heading 3

<h4> This is heading 4

<h5> This is heading 5

<h6> This is heading 6

<i> Defines italic text

<p> Defines a paragraph

<pre> Defines preformatted text

<q> Defines a short quotation

<samp> Defines sample computer code text

<small> Defines small text

<span> Defines a section in a document

<s> Defines strikethrough text

<strike> Defines strikethrough text

<strong> Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<u> Defines underlined text

Dr. Dobb's encourages readers to engage in spirited, healthy debate, including taking us to task. However, Dr. Dobb's moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing or spam. Dr. Dobb's further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | View the list of supported HTML tags you can use to style comments. | Please read our commenting policy.