Channels ▼

Open Source

ACCIS Cloud Computing System

Computing power for key research areas will soon be in the clouds for University of Oregon scientists working to connect the dots of basic understanding to real world applications through integrative science.

By late Spring 2011, a team led by Allen Malony, professor of computer and information science at the University of Oregon, will have a "cloud computing" system in place, thanks to a $1.97 million grant from the National Science Foundation. The grant was awarded last spring under the American and Recovery and Reinvestment Act (ARRA) of 2009.

The new system is dubbed an Applied Computational Instrument for Scientific Synthesis (ACISS, which is pronounced "axis").

"One way to look at cloud computing is simply as the access to computing tools, services, and utilities using a World Wide Web interface," said Malony. "Cloud" implies that access is as easy as looking at clouds in the sky, he says, and the environment itself is ubiquitous — there are clouds as far as the eye can see.

"The ACISS system is at the forefront of a revolution to apply cloud computing for scientific investigation," Malony says. "Building on technological advances in multi-core processing and GPU computing, ACISS will be realized as a private science cloud offering the most powerful computing resources yet at University of Oregon in pursuit of research discoveries in biology, physics, chemistry, human brain science, and computer science."

In general, Malony says, the goal of cloud computing is to improve a user's productivity while providing all their computing needs.

ACISS fits in nicely with the potential of integrative science, allowing researchers to explore and understand often-seemingly-different scientific domains can indeed be related. The ACISS cloud cluster — powered by open-source cloud software infrastructure — will provide for hundreds of terabytes of storage space, thousands of processing cores, high-performance computational accelerators, and high-speed integrated InfiniBand network interfaces.

All that computing power, according to the grant's goals, will help provide analysis and data-crunching tools that will benefit a variety of projects, including:

  • Biologist Shawn Lockery's efforts to study how behavior relates to activity in the brain through his data-rich approach using video microscopes for non-invasive studies of nematode worms as they freely crawl around in his already groundbreaking experimental approach.
  • Computer scientist John Conery's cross-disciplinary efforts in bioinformatics to manage and analyze gene sequence data, including projects that correlate genes in model organisms with their counterparts in humans to help researchers better understand the genetic causes of human diseases.
  • Biologist William Cresko's analysis of genes as they function under environmental influences in threespine stickleback and other fish species, work that will provide fundamental insights into the evolution of developmental processes.
  • Work in neuroinformatics by Malony, psychologist Don Tucker and computational physicist Sergei Turovets to create a new human brain-imaging instrument that can accurately monitor activity within specific tissues of a subject's brain.
  • Chemistry research on the physics of macromolecular liquids (vital in biology and engineering) by Marina Guenza's group (chemistry), what happens to the molecular properties of water surfaces under a variety of environmentally and technologically important conditions by Geri Richmond's research group (chemistry) and research on the mechanisms of various chemical reactions such as nitrogen fixation and how such knowledge might be applied by Robert Yelle (Neuroinformatics Center).
  • Physicist James Imamura's efforts to understand the structure and variations in the behavior of early and late star systems and planetary development by modeling the evolution of circumstellar disk systems (the accumulation of dust, gas, and nascent planets orbiting stars) and the stability of shock waves on star surfaces.

"The benefit of the NSF award and ACISS system to the state of Oregon builds on the concept of cloud computing," Malony says. "Not only will University of Oregon researchers have access to a powerful computing environment, by extension so too will their scientific colleagues at Oregon universities engaged in collaborative projects. The cloud-computing model encompasses the notion of clouds interacting with other clouds to enhance their services and expand their resources. The ACISS project is a bellwether for the future of computing throughout Oregon's education institutions."

Related Reading

More Insights

Currently we allow the following HTML tags in comments:

Single tags

These tags can be used alone and don't need an ending tag.

<br> Defines a single line break

<hr> Defines a horizontal line

Matching tags

These require an ending tag - e.g. <i>italic text</i>

<a> Defines an anchor

<b> Defines bold text

<big> Defines big text

<blockquote> Defines a long quotation

<caption> Defines a table caption

<cite> Defines a citation

<code> Defines computer code text

<em> Defines emphasized text

<fieldset> Defines a border around elements in a form

<h1> This is heading 1

<h2> This is heading 2

<h3> This is heading 3

<h4> This is heading 4

<h5> This is heading 5

<h6> This is heading 6

<i> Defines italic text

<p> Defines a paragraph

<pre> Defines preformatted text

<q> Defines a short quotation

<samp> Defines sample computer code text

<small> Defines small text

<span> Defines a section in a document

<s> Defines strikethrough text

<strike> Defines strikethrough text

<strong> Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<u> Defines underlined text

Dr. Dobb's encourages readers to engage in spirited, healthy debate, including taking us to task. However, Dr. Dobb's moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing or spam. Dr. Dobb's further reserves the right to disable the profile of any commenter participating in said activities.

Disqus Tips To upload an avatar photo, first complete your Disqus profile. | View the list of supported HTML tags you can use to style comments. | Please read our commenting policy.