Channels ▼
RSS

Parallel

Godel Prize Awarded for Algorithm Analysis



Shanghua Teng, a professor of computer science at Boston University and Daniel Spielman, a professor of applied mathematics and computer science at Yale University, have been awarded this year's $50,000 Godel Prize award by the ACM's Special Interest Group on Algorithms and Computing Theory and the European Association for Theoretical Computer Science for outstanding papers in theoretical science.

Teng and Spielman were recognized for their paper Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time. In it, they explain why a common algorithm, used to solve efficiency problems everywhere from airlines to online games, functions so well, especially in business.

Developed by George Dantzig, the simplex algorithm has practical application in almost all areas of business, including advertising, distribution, pricing, production planning, and transportation, among others. Dantzig's algorithm has also been successfully applied to diet design, resource conservation, and economic growth prediction. Stan Sclaroff, chair of the Boston University computer science department, says the simplex method is designed to find a solution in a reasonable amount of computing time and behaves very well in practice. But on paper, scientists were able to contrive worst-case scenarios by introducing abnormalities that would cause the algorithm's behavior to be "horrifyingly bad."

"For these problem configurations, its running time grows exponentially in the number of constraints to satisfy, and thus it could take virtually forever to find the problem solution," Sclaroff says. "Smoothed analysis gave an explanation for why the simplex method behaves very well in practice despite the menace of its worst-case complexity. Explaining this behavior had been an open problem since the simplex method's inception."

Teng's and Spielman's work also represents an advance in predicting the performance of algorithms as well as heuristics, which are methods of solving problems through intelligent trial and error. Understanding the mathematical structure of these problems is necessary to designing efficient algorithms and software.


Related Reading


More Insights






Currently we allow the following HTML tags in comments:

Single tags

These tags can be used alone and don't need an ending tag.

<br> Defines a single line break

<hr> Defines a horizontal line

Matching tags

These require an ending tag - e.g. <i>italic text</i>

<a> Defines an anchor

<b> Defines bold text

<big> Defines big text

<blockquote> Defines a long quotation

<caption> Defines a table caption

<cite> Defines a citation

<code> Defines computer code text

<em> Defines emphasized text

<fieldset> Defines a border around elements in a form

<h1> This is heading 1

<h2> This is heading 2

<h3> This is heading 3

<h4> This is heading 4

<h5> This is heading 5

<h6> This is heading 6

<i> Defines italic text

<p> Defines a paragraph

<pre> Defines preformatted text

<q> Defines a short quotation

<samp> Defines sample computer code text

<small> Defines small text

<span> Defines a section in a document

<s> Defines strikethrough text

<strike> Defines strikethrough text

<strong> Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<u> Defines underlined text

Dr. Dobb's encourages readers to engage in spirited, healthy debate, including taking us to task. However, Dr. Dobb's moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing or spam. Dr. Dobb's further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | View the list of supported HTML tags you can use to style comments. | Please read our commenting policy.
 

Video