Channels ▼
RSS

Parallel

Introducing HadoopDB


Computer scientists at Yale University have created HadoopDB, an open-source data management hybrid system for large amounts of data. The system is a hybrid of DBMS and MapReduce technologies that targets analytical workloads and is designed to run on a shared-nothing cluster of commodity machines, or in the cloud.

"In essence, HadoopDB is a hybrid of MapReduce and parallel DBMS technologies," said Daniel Abadi, assistant professor of computer science at Yale and one of the system designers. "It's designed to take the best features of both worlds. We get the performance of parallel database systems with the scalability and ease of use of MapReduce."

Yale graduate students and cocreators Azza Abouzeid and Kamil Bajda-Pawlikowski presented in-depth details of the new system at the Very Large Databases (VLDB) conference in Lyon, France, on August 27. The team demonstrated the system performance on a range of representative queries at the conference, both on structured and unstructured data, and outlined HadoopDB's characteristics along the run-time performance, loading time, fault tolerance, and scalability dimensions. HadoopDB will also be presented at HadoopWorld:NYC in New York in October.

Traditional approaches to managing data at this scale typically fall into one of two categories. The first includes parallel database management systems (DBMS), which are good at working with structured data that contain, for instance, tables with trillions of rows of data. The second includes the kind of approach taken by MapReduce, the software framework used by Google to search data contained on the Web, which gives the user more control over how the data is retrieved.

HadoopDB reduces the time it takes to perform some typical tasks from days to hours, making more complicated analysis possible -- the kind that could be used to find patterns in the stock market, earthquakes, consumer behavior and even outbreaks, Abadi said. "People have all this data, but they're not using it in the most efficient or useful way."


Related Reading


More Insights






Currently we allow the following HTML tags in comments:

Single tags

These tags can be used alone and don't need an ending tag.

<br> Defines a single line break

<hr> Defines a horizontal line

Matching tags

These require an ending tag - e.g. <i>italic text</i>

<a> Defines an anchor

<b> Defines bold text

<big> Defines big text

<blockquote> Defines a long quotation

<caption> Defines a table caption

<cite> Defines a citation

<code> Defines computer code text

<em> Defines emphasized text

<fieldset> Defines a border around elements in a form

<h1> This is heading 1

<h2> This is heading 2

<h3> This is heading 3

<h4> This is heading 4

<h5> This is heading 5

<h6> This is heading 6

<i> Defines italic text

<p> Defines a paragraph

<pre> Defines preformatted text

<q> Defines a short quotation

<samp> Defines sample computer code text

<small> Defines small text

<span> Defines a section in a document

<s> Defines strikethrough text

<strike> Defines strikethrough text

<strong> Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<u> Defines underlined text

Dr. Dobb's encourages readers to engage in spirited, healthy debate, including taking us to task. However, Dr. Dobb's moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing or spam. Dr. Dobb's further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | View the list of supported HTML tags you can use to style comments. | Please read our commenting policy.
 

Video