Channels ▼


Using Multicore to Improve Simulation Performance

Novel research on improving the simulation performance of hardware models created in the language SystemC (which is often used to shorten manufacturing design cycles to improve the time it takes to bring a product to the marketplace) has garnered a team led by Sandeep Shukla, a Virginia Tech associate professor of electrical and computer engineering, and three of his students, a best paper award at the 15th Asia and South Pacific Design Automation Conference (ASP-DAC) held this month in Taiwan.

In the paper entitled "SCGPSim: A Fast SystemC Simulator on GPUs," Shukla and his collaborators said that they were able to demonstrate how to speed up the simulation performance of certain SystemC-based hardware models "by exploiting the high degree of parallelism afforded by today's general purpose graphic processor units (GPGPU)." These units have multiple core processors capable of very high computation and data throughput. When parallelism is applied, it means that the processor units can run various parts of the simulations simultaneously, and not just as a single sequence of computations. Their experiments were carried out on an NVIDIA Tesla 870 with 256 processing cores. This equipment was donated to Shukla's lab by NVIDIA during fall 2008.

Shukla said their preliminary experiments showed they were able to speed up SystemC based simulation by factors of 30 to 100 times that of previous performances.

They named their simulation infrastructure "SCGPSim."

In the past, Shukla said, "significant effort was aimed at improving the performance of SystemC simulations, but little had been directed at making them operate in parallel. And none of the attempts were ever targeted at a massively parallel platform such as a general purpose graphic processor unit."

Another aspect of their work was the use of Compute Unified Device Architecture (CUDA). The CUDA programming model is an extension to the C software language that "exploits the processing power of graphic processor units to solve complex compute-intensive problems efficiently," Shukla explained. "High performance is achieved by launching a number of threads and making each thread execute a part of the application in parallel."

The CUDA execution model differs from the more commonly known central processing unit-based execution in terms of how the threads are scheduled. With CUDA, it is possible to have all of the threads execute simultaneously on separate processor cores and intermittently converge on the same path, thus increasing the efficiency.

The work at Virginia Tech was conducted in the Formal Engineering Research with Models, Abstractions and Transformations (FERMAT) Laboratory, founded by Shukla in 2002. Its focus is in designing, analyzing, and predicting performance of electronic systems, particularly systems embedded in automated systems. The Air Force Office of Scientific Research and the National Science Foundation helped support this research.

"Speeding up simulation of complex hardware models is extremely important for semiconductor electronics industry to producer newer and newer products in shorter times, thus improving the quality of computing and consumer electronics products faster. If such models can be simulated 10 times faster, then if validating a model took 10 days in the past, now it would take one day. This is why faster simulation performance probably attracted the attention of the ASP-DAC '10 awards committee." Shukla said.

Shukla, a 2004 recipient of a Presidential Early Career Award for Scientists and Engineers (PECASE) and a 2008 recipient of the Freidrich Wilhelm Bessel Award from the Humboldt Foundation of Germany, wrote the paper with his current Ph.D. students, Mahesh Nanjundappa and Bijoy A. Jose, also of Virginia Tech, and a past Ph.D. advisee Hiren D. Patel who is now an electrical and computer engineering assistant professor at the University of Waterloo in Canada.

ASP-DAC is one of the three conferences sponsored by IEEE Circuits and Systems Society, and ACM Special Interests Group on Design Automation, on the topic of electronics design automation. These three conferences are held every year in the US (DAC), in Europe (DATE) and in the Asia-pacific region (ASP-DAC).

Related Reading

More Insights

Currently we allow the following HTML tags in comments:

Single tags

These tags can be used alone and don't need an ending tag.

<br> Defines a single line break

<hr> Defines a horizontal line

Matching tags

These require an ending tag - e.g. <i>italic text</i>

<a> Defines an anchor

<b> Defines bold text

<big> Defines big text

<blockquote> Defines a long quotation

<caption> Defines a table caption

<cite> Defines a citation

<code> Defines computer code text

<em> Defines emphasized text

<fieldset> Defines a border around elements in a form

<h1> This is heading 1

<h2> This is heading 2

<h3> This is heading 3

<h4> This is heading 4

<h5> This is heading 5

<h6> This is heading 6

<i> Defines italic text

<p> Defines a paragraph

<pre> Defines preformatted text

<q> Defines a short quotation

<samp> Defines sample computer code text

<small> Defines small text

<span> Defines a section in a document

<s> Defines strikethrough text

<strike> Defines strikethrough text

<strong> Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<u> Defines underlined text

Dr. Dobb's encourages readers to engage in spirited, healthy debate, including taking us to task. However, Dr. Dobb's moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing or spam. Dr. Dobb's further reserves the right to disable the profile of any commenter participating in said activities.

Disqus Tips To upload an avatar photo, first complete your Disqus profile. | View the list of supported HTML tags you can use to style comments. | Please read our commenting policy.